Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents

Author:

Palese Marcella1

Affiliation:

1. Department of Mathematics, University of Torino, via C. Alberto 10, I-10123 Torino, Italy

Abstract

Abstract We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents - associated with variations of local Lagrangians - which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference36 articles.

1. [1] G. Allemandi, M. Francaviglia, M. Raiteri: Covariant charges in Chern-Simons AdS3 gravity. Classical Quantum Gravity 20 (3) (2003) 483-506.

2. [2] I. M. Anderson, T. Duchamp: On the existence of global variational principles. Amer. Math. J. 102 (1980) 781-868.

3. [3] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem for BRST symmetries. J. Math. Phys. 46 (5) (2005). 053517, 23 pp.

4. [4] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem in a general setting reducible gauge theories. J. Phys. A38 (2005) 5329-5344.

5. [5] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys. 46 (10) (2005). 103513, 19 pp.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3