Affiliation:
1. Department of Mathematics, University of Torino, via C. Alberto 10, I-10123 Torino, Italy
Abstract
Abstract
We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents - associated with variations of local Lagrangians - which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.
Reference36 articles.
1. [1] G. Allemandi, M. Francaviglia, M. Raiteri: Covariant charges in Chern-Simons AdS3 gravity. Classical Quantum Gravity 20 (3) (2003) 483-506.
2. [2] I. M. Anderson, T. Duchamp: On the existence of global variational principles. Amer. Math. J. 102 (1980) 781-868.
3. [3] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem for BRST symmetries. J. Math. Phys. 46 (5) (2005). 053517, 23 pp.
4. [4] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem in a general setting reducible gauge theories. J. Phys. A38 (2005) 5329-5344.
5. [5] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys. 46 (10) (2005). 103513, 19 pp.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献