On the notion of Jacobi fields in constrained calculus of variations

Author:

Massa Enrico1,Pagani Enrico2

Affiliation:

1. DIME - Sez. Metodi e Modelli Matematici, Università di Genova, Piazzale Kennedy, Pad. D, 16129 Genova, Italy

2. Dipartimento di Matematica, Università di Trento, Via Sommarive, 14, 38123 Povo di Trento, Italy

Abstract

Abstract In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called second variation. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as extremaloids. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of local gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners' strengths [16]. In dis- cussing the positivity of the second variation, a relevant role is played by the Jacobi fields, defined as infinitesimal generators of 1-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable accessory variational problem is established.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference23 articles.

1. [1] O. Bolza: The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations. Amer. J. Math. 30 (1908) 209-221.

2. [2] C. Caratheodory: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904. C. H. Beck'sche Verlagsbuchhandlulng (1954).

3. [3] C. Caratheodory: Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905. Mathematische Annalen 62 (1906) 449-503.

4. [4] C. Caratheodory: Sur les points singuliers du problème du Calcul des Variations dans le plan. Annali di Matematica pura e applicata 21 (1913) 153-171.

5. [5] A. Dresden: An Example of the Indicatrix in the Calculus of Variations. Am. Math. Mon. 14 (1907) 119-126.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3