Author:
Boulaaras Salah,Guefaifia Rafik,Zennir Khaled
Abstract
Abstract
In this article, we discuss the existence of positive solutions by using sub-super solutions concepts of the following
{p(x)}
-Kirchhoff system:
\left\{\begin{aligned} &\displaystyle{-}M(I_{0}(u))\triangle_{p(x)}u=\lambda^{%
p(x)}[\lambda_{1}f(v)+\mu_{1}h(u)]&&\displaystyle\text{in }\Omega,\\
&\displaystyle{-}M(I_{0}(v))\triangle_{p(x)}v=\lambda^{p(x)}[\lambda_{2}g(u)+%
\mu_{2}\tau(v)]&&\displaystyle\text{in }\Omega,\\
&\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right.
where
{\Omega\subset\mathbb{R}^{N}}
is a bounded smooth domain with
{C^{2}}
boundary
{\partial\Omega}
,
{\triangle_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)}
,
{p(x)\in C^{1}(\overline{\Omega})}
, with
{1<p(x)}
, is a function satisfying
{1<p^{-}=\inf_{\Omega}p(x)\leq p^{+}=\sup_{\Omega}p(x)<\infty}
, λ,
{\lambda_{1}}
,
{\lambda_{2}}
,
{\mu_{1}}
and
{\mu_{2}}
are positive parameters,
{I_{0}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx}
, and
{M(t)}
is a continuous function.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献