A review of green hydrogen production based on solar energy; techniques and methods

Author:

Hassan Qusay1,Tabar Vahid Sohrabi2,Sameen Aws Zuhair3,Salman Hayder M.4,Jaszczur Marek5

Affiliation:

1. Department of Mechanical Engineering , University of Diyala , Diyala , Iraq

2. Faculty of Electrical and Computer Engineering , University of Tabriz , Tabriz , Iran

3. College of Medical Techniques , Al-Farahidi University , Baghdad , Iraq

4. Department of Computer Science , Al-Turath University College , Baghdad , Iraq

5. Faculty of Energy and Fuels , AGH University of Science and Technology , Krakow , Poland

Abstract

Abstract The study examines the methods for producing hydrogen using solar energy as a catalyst. The two commonly recognised categories of processes are direct and indirect. Due to the indirect processes low efficiency, excessive heat dissipation, and dearth of readily available heat-resistant materials, they are ranked lower than the direct procedures despite the direct procedures superior thermal performance. Electrolysis, bio photosynthesis, and thermoelectric photodegradation are a few examples of indirect approaches. It appears that indirect approaches have certain advantages. The heterogeneous photocatalytic process minimises the quantity of emissions released into the environment; thermochemical reactions stand out for having low energy requirements due to the high temperatures generated; and electrolysis is efficient while having very little pollution created. Electrolysis has the highest exergy and energy efficiency when compared to other methods of creating hydrogen, according to the evaluation.

Publisher

Walter de Gruyter GmbH

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3