Affiliation:
1. Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
Abstract
Abstract
The ternary aurides RE
4Mg3Au10 (RE=Y, Nd, Sm, Gd–Dy) and their silver analogues were synthesized by induction melting of the elements in sealed niobium tubes. These intermetallic phases were characterized by powder X-ray diffraction. They crystallize with the Ca4In3Au10-type structure, which, from a geometrical point of view, is a ternary ordered version of Zr7Ni10 with the rare earth and magnesium atoms ordering on the four crystallographically independent zirconium sites. The structures of crystals from three differently prepared gadolinium samples were refined from single-crystal X-ray diffractometer data: Cmca, a=1366.69(3), b=998.07(4), c=1005.54(3) pm, wR2=0.0332, 1234 F
2 values, 46 variables for Gd4.43Mg2.57Au10, a=1378.7(1), b=1005.3(1), c=1011.2(1) pm, wR2=0.0409, 1255 F
2 values, 48 variables for Gd5.50Mg1.50Au10, and a=1350.2(5), b=995.5(1), c=1009.3(1) pm, wR2=0.0478, 1075 F
2 values, 48 variables for Gd5.61Mg1.39Au10. All crystals show substantial Mg/Gd mixing on two sites. The gold atoms form a pronounced two-dimensional substructure with Au–Au distances of 278 to 297 pm in Gd4.43Mg2.57Au10. These gold blocks are condensed via magnesium atoms (278–315 pm Mg–Au). The gadolinium atoms fill larger cavities within the three-dimensional networks. The magnesium vs. gadolinium site preference is a consequence of the different coordination numbers of the cation sites. All phases show homogeneity ranges RE
4+x
Mg3–x
Ag10 and RE
4+x
Mg3–x
Au10. The influence of the synthesis conditions is briefly discussed.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献