Performance Degradation Assessment of Rolling Element Bearings using Improved Fuzzy Entropy
Author:
Affiliation:
1. School of Mechanical Engineering , University of Shanghai for Science and Technology , Jungong Road, Shanghai 200093 , PR China
2. School of Energy and Power Engineering , Dalian University of Technology , Linggong Road, Dalian 116023 , PR China
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Instrumentation,Biomedical Engineering,Control and Systems Engineering
Reference26 articles.
1. [1] Jardine, A.K.S., Lin, D.M., Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems Signal Processing, 20 (7), 1483–1510.
2. [2] Huang, H.F., Ouyang, H.J., Gao, H.L., Guo, L., Li, D., Wen, J. (2016). A feature extraction method for vibration signal of bearing incipient degradation. Measurement Science Review, 16 (3), 149-159.10.1515/msr-2016-0018
3. [3] Tandon, N., Choudhury, A. (1999). A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribology International, 32 (8), 469-480.
4. [4] Gebraeel, N., Lawley, M., Liu, R., Parmeshwaran, V. (2004). Residual life predictions from vibration-based degradation signals: A Neural Network approach. IEEE Transactions on Industrial Electronics, 51 (3), 694-700.10.1109/TIE.2004.824875
5. [5] Qiu, H., Lee, J., Lin, J., Yu, G. (2003). Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Advanced Engineering Informatics, 17 (3), 127-140.10.1016/j.aei.2004.08.001
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Performance degradation prediction of rolling bearing based on temporal graph convolutional neural network;Journal of Mechanical Science and Technology;2024-08
2. Remaining useful life prediction of machinery based on performance evaluation and online cross-domain health indicator under unknown working conditions;Journal of Manufacturing Systems;2024-08
3. A New Anomaly Detection Approach Based on Siamese Network with Fast Gradient Sign Algorithm for Rolling Bearing Fault Diagnosis;2023
4. A Novel Abnormal Vibration State Recognition Method for Rolling Mill;2022 34th Chinese Control and Decision Conference (CCDC);2022-08-15
5. Fault feature extraction method of gear based on spectral amplitude modulation and autocorrelation analysis;Noise & Vibration Worldwide;2022-05-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3