Parallel real-world LU decomposition: Gauss vs. Crout algorithm

Author:

Stabrowski Marek

Abstract

Abstract This paper presents numerical experiments with assorted versions of parallel LU matrix decomposition algorithms (Gauss and Crout algorithm). The tests have been carried out on the hardware platform with fourcore Skylake processor featuring hyperthreading technology doubling virtually core number. Parallelization algorithms have been implemented with the aid of classic POSIX threads library. Experiments have shown that basic 4-thread acceleration of all parallel implementations is almost equal to the number of threads/processors. Both algorithms are worth considering in real-world applications (Florida University collection). Gauss algorithm is a better performer, with respect to timing, in the case of matrices with lower density of nonzeros, as opposed to higher density matrices. The latter are processed more efficiently with the aid of Crout algorithm implementation.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference7 articles.

1. Gaussian elimination In WIREs;HighamN;Advanced Review Computational Statistics,2011

2. Parallel numerics Technische Universität für Informatik;Huckle;Institut,2006

3. parallel algorithm based on In Proceedings of the nd on Service;Zhang;International Conference Software Engineering Science IEEE,2011

4. Performance modeling and analysis of parallel Gaussian elimination on multi - core computers of University;Sibai;Journal Computer Information Sciences,2014

5. On algorithmic variants of parallel Gaussian elimination : comparison of implementations in terms of performance and numerical properties Research Report https hal inria fr hal;Donfack,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical parallelization of Gear-Nordsieck and Brayton-Gustavson-Hatchel stiff ODE solver;Annals of Computer Science and Information Systems;2021-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3