An image processing pipeline to segment iris for unconstrained cow identification system

Author:

Larregui Juan I.1,Cazzato Dario2,Castro Silvia M.3

Affiliation:

1. Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur (UNS), Instituto de Ciencias e Ingeniería de la Computación (ICIC UNS - CONICET), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), ArgentinaBuenos Aires

2. Interdisciplinary Centre for Security Reliability and Trust (SnT), University of Luxembourg, LuxembourgLuxembourg

3. Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur (UNS), Instituto de Ciencias e Ingeniería de la Computación (ICIC UNS - CONICET), ArgentinaBuenos Aires

Abstract

AbstractOne of the most evident costs in cow farming is the identification of the animals. Classic identification processes are labour-intensive, prone to human errors and invasive for the animal. An automated alternative is an animal identification based on unique biometric patterns like iris recognition; in this context, correct segmentation of the region of interest becomes of critical importance. This work introduces a bovine iris segmentation pipeline that processes images taken in the wild, extracting the iris region. The solution deals with images taken with a regular visible-light camera in real scenarios, where reflections in the iris and camera flash introduce a high level of noise that makes the segmentation procedure challenging. Traditional segmentation techniques for the human iris are not applicable given the nature of the bovine eye; at this aim, a dataset composed of catalogued images and manually labelled ground truth data of Aberdeen-Angus has been used for the experiments and made publicly available. The unique ID number for each different animal in the dataset is provided, making it suitable for recognition tasks. Segmentation results have been validated with our dataset showing high reliability: with the most pessimistic metric (i.e. intersection over union), a mean score of 0.8957 has been obtained.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Reference66 articles.

1. of issues and challenges in designing iris recognition systems for noisy imaging environment In International Conference on;Hajari;review Pervasive Computing IEEE

2. Unsupervised approach for the accurate localization of the pupils in near - frontal facial images of Electronic Imaging;Leo;Journal,2013

3. Real - Time Detection and Measurement of Eye Features from Color Images;Borza;Sensors,2016

4. cattle identification approach based on weber s local descriptor and adaboost classifier and in;Gaber;Computers Electronics Agriculture,2016

5. Face recognition for cattle in Third International Conference on Processing;Kumar;Image Information IEEE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning framework for bovine iris segmentation;Journal of Animal Science and Technology;2023-06-01

2. Identification and Recognition of Animals from Biometric Markers Using Computer Vision Approaches: A Review;Kafkas Universitesi Veteriner Fakultesi Dergisi;2023

3. Scale Space Mining Algorithm and Application Analysis Based on Computer Image Processing;2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE);2022-12-16

4. Cattle face recognition under partial occlusion;Journal of Intelligent & Fuzzy Systems;2022-06-01

5. Iris recognition method based on segmentation;EUREKA: Physics and Engineering;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3