Estimation in the Presence of Heteroskedasticity of Unknown Form: A Lasso-based Approach

Author:

González-Coya Emilio1,Perron Pierre1

Affiliation:

1. Department of Economics , Boston University , Boston , USA

Abstract

Abstract We study the Feasible Generalized Least-Squares (FGLS) estimation of the parameters of a linear regression model in the presence of heteroskedasticity of unknown form in the errors. We suggest a Lasso based procedure to estimate the skedastic function of the residuals. The advantage of using Lasso is that it can handle a large number of potential covariates, yet still yields a parsimonious specification. Using extensive simulation experiments, we show that our suggested procedure always provide some improvements in the precision of the parameter of interest (lower Mean-Squared Errors) when heteroskedasticity is present and is equivalent to OLS when there is none. It also performs better than previously suggested procedures. Since the fitted value of the skedastic function falls short of the true specification, we form confidence intervals using a bias-corrected version of the usual heteroskedasticity-robust covariance matrix estimator. These have the correct size and substantially shorter length than when using OLS. Our method is applicable to both cross-section (with a random sample) and time series models, though here we concentrate on the former.

Funder

Boston University

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Economics and Econometrics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3