High Drilling Methane Drainage in Fracturing Zones Formed by Water Injection into Boreholes

Author:

Wang Gang,Huang Wanpeng,Sun Lulu,Wu Mengmeng,Zhang Xiaoqiang

Abstract

AbstractMethane drainage method should be used before coal mining of many modern collieries because venti lation air methane is in sufficient to keep methane level within regulation values. The technology of high drilling methane drainage (HDMD) has been used for methane drainage although its effect is not very stable due to parameter design. The height of the fracturing zones is determined mostly according to empirical formula, on-site observation and numerical simulation analysis. In this paper, a method was introduced for determining the height of the air f ract uring zones (AFZs) based on its high similarity to the characteristics of Fracturing zones and the relationship between the height of Fracturing zones and the strain of overl ying rock strata. The application of water injection in both Shuangdingshan and Dongrong collieries found that the theoretically calculated the height of the Fracturing zones was approximately equal to the measured one in field tests within a permissible error of less than 5%, proving that the method is feasible. Based on the designed drainage parameters, the u tilization of HDMD technology in the collieries mentioned above found that the methane concentrations in both tail gate and upper corner were controlled in the ranges of 0.17% to 0.32% and 0.26% to 0.84%, respectively. These results showed that the water injection verified HDMD in Fracturing zones could effectively solve the problem of metha ne overrun and also verified the accuracy and reliability of its related theory.

Publisher

Walter de Gruyter GmbH

Reference24 articles.

1. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining of;Abbas;International Journal Coal Geology,2012

2. Research and application of drainage parameters for gas accumulation zone in overlying strata of goaf area;Zhang;Safety Science,2012

3. Spatial - temporal evolution of gas migration pathways in coal during shear loading of and Technology;Peng;International Journal Mining Science,2012

4. Improvement of methane drainage in high gassy coal seam using water jet technique Inter national Journal of Coal;Lu;Geology,2009

5. Coalbed methane : from hazard to resource of;Flores;International Journal Coal Geology,1998

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3