Bleeding Control for Improving Internal Waverider Inlet Self-Starting ability

Author:

Fengyuan Zuo,Guoping Huang,Chen Xia

Abstract

Abstract Internal waverider inlets (IWIs) are novel three-dimensional (3D) high-performance inward turning inlets. However, they possess poor self-starting capacity when applied in a fixed-geometry inlet for ramjets. Firstly, this paper presents an analysis of self-starting capacity for IWIs to demonstrate that IWIs face more difficult challenges when used as ramjet inlets than they do as scramjet inlets. Self-starting capacity must be taken into account when designing ramjet inlets. Secondly, the impact of a fluidic control method on a fixed-geometry IWI was studied by numerical simulation of fluid flow. The numerical results show that the fluidic control mechanism improved the self-starting capacity of the IWI at low Mach numbers: the minimum Mach number of self-starting capacity was reduced from M3.8 to M3.2; furthermore, the compression ratio was increased from 29.9 with no fluidic control to 31.9. By analyzing two different groups of fluidic control positions, it was determined that bleeding before the separation bubble has no impact on the IWI self-starting capacity.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Reference46 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3