Experimental Investigation of the Effect of the Probe Support Tail Structure on the Compressor Cascade Flow Field

Author:

Xiang Honghui,Ge Ning,Gao Jie,Yang Rongfei,Hou Minjie

Abstract

Abstract Aiming at resolving the problem of measuring probe blockage effect in the performance experiments of high loaded axial flow compressors, an experimental investigation of the probe support disturbance effect on the compressor cascade flow field was conducted on a transonic plane cascade test facility. The influence characteristics of the probe support tail structure on the cascade downstream flow field under different operation conditions were revealed through the detailed analysis of the test data. The results show that the aerodynamic coupling effect between the upstream probe support wake and the downstream cascade flow field is very intense. Some factors, i. e. inlet Mach number, probe support tail structure, circumferential installing position of probe, and axial distance from the probe support trailing edge to the downstream cascade, are found to have the most impact on the probe disturbance intensity. Under high speed inlet flow condition, changing probe support tail structure can’t inhibit probe support disturbance intensity effectively. Whereas under low speed inlet flow condition, compared with the cylindrical probe, the elliptic probe can inhibit probe support wake loss and reduce disturbance effects on the downstream cascade flow field.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Reference34 articles.

1. The influence of compressor aerodynamics on pressure probes: Part 2 numerical models;ASME Paper,2004

2. Considerations for using 3D pneumatic probes in high speed axial compressors;ASME Paper,2002

3. Effects of probe support on the stall characteristics of a low-speed axial compressor;J Therm Sci,2016

4. Improvement the accuracy of multihole probe measurements in velocity gradients;ASME Paper,2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3