Unconditionally secure signature schemes revisited

Author:

Swanson Colleen M.,Stinson Douglas R.

Abstract

AbstractUnconditionally secure signature (USS) schemes provide the ability to electronically sign documents without the reliance on computational assumptions needed in traditional digital signatures. Unlike digital signatures, USS schemes require that verification algorithms are not public – for any possible signer, a given user must have a different secret verification algorithm corresponding to that signer. Thus, any viable security definition for a USS scheme must carefully treat the subject of what constitutes a valid signature. That is, it is important to distinguish between signatures that are created using a user's signing algorithm and signatures that may satisfy one or more user verification algorithms. Moreover, given that each verifier has his own distinct verification algorithm, a USS scheme must necessarily handle the event of a disagreement. In this paper, we present a new security model for USS schemes that incorporates these notions, as well as give a formal treatment of dispute resolution and the trust assumptions required. We provide formal definitions of non-repudiation and transferability in the context of dispute resolution, and give sufficient conditions for a USS scheme to satisfy these properties. We then extend our basic framework to the setting of strong key-insulated signatures, which increase robustness against key exposure. Finally, we give security analyses for two constructions: Hanaoka et al.'s construction, which we show is secure in our basic USS model, and a key-insulated extension of this construction, which is secure in our strong key-insulated model. This is an extended version of the conference paper [Lecture Notes in Comput. Sci. 6673, Springer, Berlin (2011), 100–116], which appeared in ICITS 2011.

Funder

NSERC

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information-theoretically secure equality-testing protocol with dispute resolution;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3