Identifying individual jaguars from camera-trap images using the HotSpotter program

Author:

Wiig Øystein1ORCID,da Silva Teixeira Karollyna2,Sena Leonardo3,Santos de Oliveira Halícia Celeste2,Mendes-Oliveira Ana Cristina2

Affiliation:

1. Natural History Museum, University of Oslo , POB 1172 Blindern, NO-0318 Oslo , Norway

2. Laboratory of Ecology and Zoology of Vertebrates (LABEV), Institute of Biological Science, Federal University of Pará , Belém , Para , Brazil

3. Center for Advanced Biodiversity Studies (Ceabio), Biological Sciences Institute, Federal University of Pará , Belém , Para , Brazil

Abstract

Abstract We identified individual jaguars from a database of camera-trap images collected in the Eastern Amazonian rainforest using the artificial intelligence software HotSpotter. We identified individuals from 131 of 217 images. Twenty-five different individuals were identified based on images of the left side. We compared our results with the results from an undergraduate study that manually identified 18 jaguar individuals from 53 images also used in the present study. One of the 18 individuals was found to be misclassified based on HotSpotter. We found HotSpotter to be useful in identifying individual jaguars in our study area.

Publisher

Walter de Gruyter GmbH

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference13 articles.

1. Bodesheim, P., Blunk, J., Körschens, M., Brust, C.-A., Käding, C., and Denzler, J. (2022). Pre-trained models are not enough: active and lifelong learning is important for long-term visual monitoring of mammals in biodiversity research—individual identification and attribute prediction with image features from deep neural networks and decoupled decision models applied to elephants and great apes. Mamm. Biol. 102: 853–875, https://doi.org/10.1007/s42991-022-00224-8.

2. Bohnett, E., Poya Faryabi, S., Lewison, R., An, L., Bian, X., Rajabi, A.M., Jahed, N., Rooyesh, H., Mills, E., Ramos, S., et al.. (2023). Human expertise combined with artificial intelligence improves performance of snow leopard camera trap studies. Glob. Ecol. Conserv. 41: e02350, https://doi.org/10.1016/j.gecco.2022.e02350.

3. Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E., and Butin, S. (2015). Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52: 675–685, https://doi.org/10.1111/1365-2664.12432.

4. Crall, J.P., Stewart, C.V., Berger‐Wolf, T.Y., Rubenstein, D., and Sundaresan, S.R. (2013). HotSpotter—patterned species instance recognition. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV). Institute of Electrical and Electronics Engineers, 15–17 January 2013, Tampa, Florida, USA, pp. 230–237.

5. Dunbar, S.G., Anger, E.C., Parham, J.R., Kingen, C., Wright, M.K., Hayes, C.T., Safi, S., Holmberg, J., Salinas, L., and Baumbach, D.S. (2021). HotSpotter: using a computer-driven photo-id application to identify sea turtles. J. Exp. Mar. Biol. Ecol. 535: 151590, https://doi.org/10.1016/j.jembe.2020.151490.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3