Acoustic identification of two morphologically similar bat species, Miniopterus magnater and Miniopterus fuliginosus (Chiroptera, Miniopteridae)

Author:

Wu Hui1,Jiang Tinglei2,Liu Sen3,Lu Guanjun4,Feng Jiang12

Affiliation:

1. College of Life Science, Jilin Agricultural University, Xincheng ST 2888, Changchun 130118, China

2. Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, China

3. Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China

4. College of Urban and Environment Science, Changchun Normal University, Changchun, 130032, China

Abstract

AbstractBats play important roles in ecosystems, and are thus considered bioindicators. Libraries of echolocation calls provide huge potential resources for bat species identifications, ecological studies and conservation surveys. Here, the echolocation calls of two morphologically similar bat species (Miniopterus magnater and Miniopterus fuliginosus) were recorded and described in order to characterize vocal signatures for field identification in China. Both M. magnater and M. fuliginosus emitted short frequency modulated echolocation calls with narrow bandwidths. Each call of the former species included two harmonics, with the first harmonic being the strongest, whereas calls of the latter species normally contained one harmonic. Although call durations were similar between the two species, there were significant differences in start, end and peak frequencies between M. magnater and M. fuliginous. The results showed that 92.3% of all calls recorded in China were attributed to the correct species based on spectral features of echolocation calls. We concluded that echolocation calls are valuable characters for the identification of morphologically similar bat species.

Funder

National Natural Science Foundation of China

Fund of the Jilin Province Science and Technology Development Project

Publisher

Walter de Gruyter GmbH

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3