Covid-19: natural or anthropic origin?

Author:

Hassanin Alexandre1ORCID,Grandcolas Philippe1ORCID,Veron Géraldine1ORCID

Affiliation:

1. Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN , Sorbonne Université, EPHE, Université des Antilles, Muséum National d’Histoire Naturelle , CP 51, 57 rue Cuvier, 75231 , Paris Cedex 05 , France

Abstract

Abstract Viruses similar to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been discovered in bats of the genus Rhinolophus and in the Sunda pangolin, Manis javanica Desmarest, 1822, suggesting that these animals have played a key role in the emergence of the Covid-19 outbreak in the city of Wuhan, China. In this paper, we review the available data for sarbecoviruses (viruses related to SARS-CoV [2002–2003 outbreak] and SARS-CoV-2) to propose all possible hypotheses on the origin of Covid-19, i. e., involving direct transmission from horseshoe bats to humans, indirect transmission via the pangolin or another animal, with interspecies contamination between either wild animals or animals kept in cage. Present evidence indicates that Rhinolophus bats are the natural reservoir of all sarbecoviruses, and that two divergent SARS-CoV-2-like viruses have circulated in southern China (at least in Guangxi and Guangdong provinces) between August 2017 and March 2019 in captive pangolins destined for sale in wildlife markets. We performed a genetic analysis of seven seized pangolins found to be positive for SARS-CoV-2-like virus using mitochondrial DNA sequences extracted from Sequence Reads Archive data. The results reveal that the same SARS-CoV-2-like virus can be found in animals with distinct haplotypes, which means that they were probably captured in different Southeast Asian regions. Our interpretation is that some pangolins were contaminated in captivity (by other pangolins or by another species to be determined), suggesting that illegal trade of living wild mammals is at the origin of the Covid-19 outbreak. To definitely validate this hypothesis, it is however necessary to discover a virus almost identical to SARS CoV-2 (at least 99% of identity) in animals sold in wet markets. Although pangolins are good candidates, other mammals, such as small carnivores, should not be overlooked.

Publisher

Walter de Gruyter GmbH

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference31 articles.

1. Amman, B.R., Carroll, S.A., Reed, Z.D., Sealy, T.K., Balinandi, S., Swanepoel, R., Kemp, A., Erickson, B.R., Comer, J.A., Campbell, S., et al. (2012). Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8: e1002877, https://doi.org/10.1371/journal.ppat.1002877.

2. Azhar, E.I., El-Kafrawy, S.A., Farraj, S.A., Hassan, A.M., Al-Saeed, M.S., Hashem, A.M., and Madani, T.A. (2014). Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370: 2499–2505, https://doi.org/10.1056/NEJMoa1401505.

3. Cheng, W., Xing, S., and Bonebrake, T.C. (2017). Recent pangolin seizures in China reveal priority areas for intervention. Conserv. Lett. 10: 757–764, https://doi.org/10.1111/conl.12339.

4. Drexler, J.F., Gloza-Rausch, F., Glende, J., Corman, V.M., Muth, D., Goettsche, M., Seebens, A., Niedrig, M., Pfefferle, S., Yordanov, S., et al. (2010). Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 84: 11336–11349, https://doi.org/10.1128/JVI.00650-10.

5. Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Hu, B., Zhang, W., Peng, C., et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503: 535–538, https://doi.org/10.1038/nature12711.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3