Evaluation and optimization of multi-lateral wells using MODFLOW unstructured grids

Author:

Lux Marcell,Szanyi János,Tóth Tivadar M

Abstract

AbstractMulti-lateral wells have been increasingly used in recent years by different industries including oil- and gas industry along with coal bed methane- and water production. The common purpose of these wells is to achieve a higher production rate per well. More and more sophisticated well patterns and geometries can be implemented in practice which calls for improved modelling techniques. Complicated well geometries and small lateral diameters require high resolution models in the vicinity of the wells. With structured finite difference grids this can only be achieved by unnecessary refinements even far away from the wellbores. However the model may still suffer from orientation problems if laterals do not coincide with the rows or columns of the rectangular mesh.In the present work, we applied unstructured grids to model multi-lateral wells and compared the results to structured models. We used the MODFLOW-USG code, which simulates groundwater flow using a generalized control volume finite-difference approach, allowing grids other than orthogonal structured grids to be applied. This offers a solution for orientation and resolution problems. The second part of the paper aims to optimize multi-lateral well geometry by evaluating the effect of length, angle and number of laterals.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference16 articles.

1. Important Geological Properties of Unconventional Resource Shales;Central European Journal of Geosciences,2011

2. Electrofacies in gas shale from well log data via cluster analysis: A case study of the Perth Basin, Western Australia;Central European Journal of Geo-sciences,2014

3. MODFLOW–USG Version 1: An Unstructured Grid Version of MODFLOW for Simulating Groundwater Flow and Tightly Coupled Processes Using a Control Volume Finite-Difference Formulation;U.S. Geological Survey Techniques and Methods,2013

4. Multi-branched horizontal wells for coalbed methane production: Field performance and well structure analysis;International Journal of Coal Geology,2014

5. Productivity prediction model and optimal configuration of herringbone multilateral well;Journal of Central South University,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3