Integrating weather and geotechnical monitoring data for assessing the stability of large scale surface mining operations

Author:

Steiakakis Chrysanthos,Agioutantis Zacharias,Apostolou Evangelia,Papavgeri Georgia,Tripolitsiotis Achilles

Abstract

AbstractThe geotechnical challenges for safe slope design in large scale surface mining operations are enormous. Sometimes one degree of slope inclination can significantly reduce the overburden to ore ratio and therefore dramatically improve the economics of the operation, while large scale slope failures may have a significant impact on human lives. Furthermore, adverse weather conditions, such as high precipitation rates, may unfavorably affect the already delicate balance between operations and safety. Geotechnical, weather and production parameters should be systematically monitored and evaluated in order to safely operate such pits. Appropriate data management, processing and storage are critical to ensure timely and informed decisions.This paper presents an integrated data management system which was developed over a number of years as well as the advantages through a specific application. The presented case study illustrates how the high production slopes of a mine that exceed depths of 100–120 m were successfully mined with an average displacement rate of 10– 20 mm/day, approaching an almost slow to moderate landslide velocity. Monitoring data of the past four years are included in the database and can be analyzed to produce valuable results. Time-series data correlations of movements, precipitation records, etc. are evaluated and presented in this case study. The results can be used to successfully manage mine operations and ensure the safety of the mine and the workforce.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

Reference8 articles.

1. Stability and movements of open-pit lignite mine in Northern Greece;Proc. 18th ICSMGE,2013

2. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method;International Journal of Rock Mechanics & Mining Sciences,2007

3. Quantitative correlation of rainfall and earth surface displacements for slope stability studies;Proceedings of SPIE,2015

4. Quantitative correlation of rainfall and earth surface displacements for slope stability studies;Proceedings of SPIE,2015

5. Complementing geotechnical slope stability and land movement analysis using satellite DInSAR;Central European Journal of Geosciences,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3