Molekulare und kinetische Charakterisierung der Xanthin-Dehydrogenase aus dem phototrophen Bakterium Rhodopseudomonas capsulata / Molecular and Kinetic Characterization of Xanthine Dehydrogenase from the Phototrophic Bacterium Rhodopseudomonas capsulata

Author:

Aretz Werner1,Kaspari Herwig1,Klemme Jobst-Heinrich1

Affiliation:

1. Institut für Mikrobiologie der Universität Bonn, Meckenheimer Allee 168, D-5300 Bonn

Abstract

Abstract The structural and kinetic properties of xanthine dehydrogenase (EC 1.2.1.37) from the facultative phototrophic bacterium Rhodopseudomonas capsulata were studied. The enzyme was fully induced when hypoxanthine or xanthine, but less effectively when uric acid served as nitrogen source during growth. The enzyme was purified about 2300-fold from cells grown photosynthetically with hypoxanthine as N-source by using ammoniumsulfate precipitation, gel filtration, ion-exchange and affinity chromatography. The molecular weight as determined by gel filtration throug Sephacryl S-300 was 345000. Subunit analysis by sodium dodecyl sulfate gel electrophoresis suggested a composition of four identical subunits with a molecular weight of 84000. The enzyme contained 2 flavin, 2 molybdenum and 8 iron-sulfur groups per mol. The turnover number with hypoxanthine and NAD as substrates was 12000 min-1. Hypoxanthine, 1-methylhypoxanthine, 8-azahypoxanthine, xanthine, 1-methylxanthine, 2-hydroxypurine, 6,8-di-hydroxypurine, 5-azacytosine and 5-azauracil served as electron donors. The most effective electron acceptor was NAD. The kinetic constants (Km) were (in μm): 52.5 (hypoxanthine); 32.5 (xanthine) and 61.2 (NAD). Various purine compounds inhibited the enzyme competitively in respect to hypoxanthine as substrate. Although reduction of uric acid to xanthine was not detected by using purified enzyme preparations, in vitro-experiments with 14C-labelled uric acid indicated that the enzyme xanthine dehydrogenase participates in uric acid degradation in Rps. capsulata. According to their electrophoretic mobilities, the xanthine dehydrogenases isolated from hypoxanthine-and uric acid-grown cells were identical.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3