Microstructural evolution and impression creep properties of a lead-based alloy PbSn16Sb16Cu2

Author:

Wang Duanzhi12,Qi Yuan2,Zhang Dong2,Song Baoyong2,Pan Zhongwen2,Tong Yang3,Kang Huifeng45,Han Wenzhong45

Affiliation:

1. Central South University , Shangsha , 410083, Hunan , China

2. Beijing Institute of Aerospace System Engineering , Beijing , 100076, China

3. Taiyuan University of Science and Technology , Taiyuan , 030024, Shanxi , China

4. College of Aerospace Engineering , North China Institute of Aerospace Engineering , Langfang , 065000, Hebei , China

5. The Key Laboratory of Trans Air-water Media Aircraft , Langfang , 065000, Hebei , China

Abstract

Abstract The impression creep behavior of a lead-based PbSn16Sb16Cu2 alloy was studied at stresses in the range from 15 to 30 MPa and temperatures in the range from 333 to 393 K. XRD, SEM, and EDS techniques were used to analyze microstructural evolutions of the alloy before and after creep at different impression creep conditions. Results show that, in the range of experimental conditions, the calculated stress exponent and the creep activation energy of the alloy are 4.12 and 60.56 kJ mol−1, respectively. Grain boundary diffusion-dominated dislocation climbing is the main impression creep mechanism of PbSn16Sb16Cu2 alloy. Creep rate increases and creep resistance decreases with the increase of temperature and stress, respectively. Two reasons dominate the creep process: first, Sn is largely precipitated from the solid solution in the matrix, which weakens the overall strength of the matrix during the creep process; second, as temperature and stress increase, the atoms are vibrated more fiercely by thermal energy, which results in a softening of the matrix and SnSb phase.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3