Evaluation of chilled casting and extrusion-shear forming technology based on numerical simulation and experiments

Author:

Hu H. J.1,Gan S. L.1,Tian Y.1,Zhang D. F.1,Feng J. K.1,Ou Z. W.1

Affiliation:

1. Chongqing , P. R. China

Abstract

Abstract Magnesium alloys on the surface of billets might be refined by chilled casting process, but the grains of the center of billets are coarse, and there are a lot of void defects in the center of billets. These defects can be eliminated by hot extrusion, while fibrous microstructures and strong basal textures might be formed. This paper presents a new short process technology which includes chilled casting and extrusion-shear (CCES). It is crucial to understand the effects of die structures on the deformation behaviors, strain distribution and load requirements. Three selections of processes and die structures were done by simulations and experiments which include CCES process with 4 times consecutive shearings plastic deformation, CCES process by lateral extrusion with 90° shearing angle, and combined CCES process mode. The research results show the third selection is recommended. Three-dimensional (3D) geometric models with different channel angles (30°, 45°) for the third selection CCES dies were designed. The heterogeneities of plastic deformation by CCES dies with different channel angles were analyzed from the simulation results. The simulation results show strains decrease with rising of channel angles. The lower channel angles improve the deformation heterogeneity of magnesium alloy billets. Smaller channel angles obtain higher strains and produce tinier sub-grains. The forces of the CCES process decrease with rising of channel angles. The analysis results showed that finer and uniform microstructures can be obtained if channel angles in the CCES dies are appropriate.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3