Abstract
Abstract
Magnetic abrasive finishing (MAF), an unconventional process, enhances the surface finish of a material. The current research focuses on its use with SS310s. The finite element analysis (FEA) result shows the effect of control parameters on the magnetic flux density. In FEA analysis, it was decided to maintain an air gap of 1.5-2 mm and a voltage of 10-20 V. A response surface methodology (RSM) desirability function is used to identify the optimal process parameters. Experiments are conducted for optimizing the process parameters like voltage, rotational speed, machining gap, mixing ratio, and mesh number to enhance the material removal rate (MRR) and surface roughness (Ra). A series of 62 experiments are conducted using optimized process parameters at different levels. Moreover, analysis of variance (ANOVA) is used to identify the percentage contribution of each process parameter in %ΔRa and MRR. From this, the mesh number of the abrasives plays an important role in the finishing process owing to the increased number of cutting edges and because of the uniform normal force (Fn) distribution. The optical microscopic image result and the wear test confirms that the surface finish of SS310s has been improved using MAF.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science