Study on the effects of the tension and torsion loading sequence on the mechanical properties of a 20 carbon steel

Author:

Hou Pengliang1,Jing Huantao1,He Yujie1,Zhao Hongwei2,Xiao Haining1,Zhang Chunwei1

Affiliation:

1. Yancheng Institute of Technology , Yancheng , 224051 , China

2. Jilin University , Changchun , Jilin , China

Abstract

Abstract In engineering applications, cylindrical bars of 20 carbon steel are often subjected to a combination of tensile loading and torsional loading during the service, thereby causing premature failure or an accident. In order to explore the influence of loading sequence of tension and torsion on the mechanical properties of 20 carbon steel, tests of combined tension-torsion loading and combined torsion-tension loading are employed in this work. During experiments, a microscope is used for the in situ characterization of micro-damage evolution on the surface of specimens. At the same time, to analyze the influence of loading sequence on the stress distribution, ABAQUS software is utilized to conduct the relevant finite element simulation, where the results of finite element analysis are consistent with the experiments. Evidently, the torsional strength of 20 carbon steel is decreased with an increase in the pre-tensile stress, under the combined tension-torsion. However, the tensile strength of 20 carbon steel is enhanced with the increasing pre-torsional angles, under the combined torsion-tension. Moreover, the in situ images characterized the micro-damage evolution of 20 carbon steel under pure tension, pure torsion, combined tension-torsion and combined torsion-tension. It is concluded that the deference in loading sequence changes the failure mechanism of 20 carbon steel is different.

Funder

National Natural Science Foundation of China

Special Projects for Development of National Major Scientific Instrument and Equipment

Open research fund of Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instrument

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3