Numerical and experimental formability analysis of aluminum 3105 sandwich panels produced by continuous hot-press forming

Author:

Elibol Cagatay1ORCID,Wapande Sadam Hamis2

Affiliation:

1. Turkish-German University , Department of Materials Science and Technology , Istanbul , 34820 , Turkey

2. TU Dortmund, Institute of Forming Technology and Lightweight Components , Dortmund , Nordrhein-Westfalen , Germany

Abstract

AbstractAluminum–plastic composites as building materials are widely used for different construction purposes, for instance, for exterior wall cladding, ventilated facades, and interior decoration of buildings, in billboards, trains, and automotive industry. The main goal of this study is to investigate the formability of AA3105/LDPE/AA3105 sandwich composite in detail, which would exhibit a higher formability compared to AA3105 due to its higher strain rate sensitivity and strain hardening exponent. This is of decisive importance for the manufacturing process. The Nakajima tests are performed to experimentally determine the forming limit curves (FLCs) usingin situoptical technique digital image correlation. Furthermore, numerical simulations of Nakajima tests are conducted using a modified Gurson–Tvergaard–Needleman damage model to compare the numerically and experimentally determined FLCs. The results show that the sandwich composite underwent inhomogeneous deformation during the Nakajima test, and that the FLC has no typical patterns exhibited by metal sheets. The FLCs predicted by the numerical model used in this study exhibit a very good correlation with the FLCs determined experimentally. The results of the present study provide new insights into the analysis and understanding of the deformation behavior of the sandwich composite sheet that may undergo complex stress and strain states.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3