Lipid-based nanoparticles for cancer immunotherapy

Author:

Fan Shumin1ORCID,Han Huize1,Yan Zhicheng1,Lu Yao1,He Bing12ORCID,Zhang Qiang12ORCID

Affiliation:

1. Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing , China

2. Ningbo Institute of Marine Medicine , Peking University , Ningbo , Zhejiang Province , China

Abstract

Abstract As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient’s own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

AI + Health Collaborative Innovation Cultivation Project

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3