Functionalization of polyethetherketone for application in dentistry and orthopedics

Author:

Harting Rico,Barth Marius,Bührke Thomas,Pfefferle Regina Sophia,Petersen Svea

Abstract

AbstractSince late 1990s, polyetheretherketone (PEEK) has presented a promising polymeric alternative to metal implant components, particularly in orthopedic and traumatic applications. However, PEEK is biologically inert, which has constrained its potential applications. In this manner, enhancing the bioactivity of PEEK is a huge challenge that must be comprehended to completely understand the potential advantages. Up to now, two noteworthy methodologies are discussed to enhance the bioactivity of PEEK, including bulk and surface modification. Although the latter is extremely challenging due to the very high physical and chemical stability of the high performance polymer, there are some stated modification reactions in the literature, which will be collocated with in the literature-reported PEEK composites in the present article. We will furthermore add information on polymer-based drug delivery systems and the biofunctionalization of polymers in general and discuss their applicability for PEEK, as we estimate that these strategies will gain greater attention in the future. At the end of the article, our own research on the development of a PEEK-associated biodegradable drug-delivery system with potential application in dentistry or orthopedics will be highlighted.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,Bioengineering

Reference112 articles.

1. Electroless nickel-phosphorus coating on poly (ether ether ketone)/carbon nanotubes composite;Electron Mater Lett,2014

2. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces;J Mater Sci Mater Med,2005

3. Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces;Colloids Surf A Physicochem Eng Asp,1997

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3