Affiliation:
1. Institut für physikalische Chemie der Universität Frankfurt/Main
Abstract
The gas phase ion chemistry of the simplest known phosphorus ylide, trimethylmethylenephosphorane, has been studied in the mass range m/e=2 - 186 and the pressure range 10-7-10-4 Torr. The most abundant product ion, m/e = 104, (CH3)2C2H5PCH2
'+ is formed by a methylene group transfer reaction of the molecular ion. Almost all of the other product ions formed from the molecular ion can be subsumed under the general formula (CH3)3PCHPRn
+ (R = H, CH3; n=1,2,3). The reactions indicate that the molecular ion has lost its ylide character almost completely. The protonated molecule is formed almost exclusively by a reaction of the fragment ion m/e = 75. This reaction and the CH3PH group transfer reaction indicate a cyclic structure (CH3) HP(CH2)2
+ for this ion. A cyclic structure is also assumed for the ion m/e = 73, PC3H6
+, which undergoes P and PH transfer reactions. The reactions of the ion m/e = 47 are consistent with the structure CH3PH+. The ICR and mass spectra are given, some metastable decompositions are discussed
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献