Affiliation:
1. Institut für Theoretische Physik der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany and Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut, USA
Abstract
During collisions of heavy ions with heavy targets below the Coulomb barrier, adiabatic molecular orbitals are formed for the inner electrons. Deviations from adiabaticity lead to coupling between various states and can be treated by time-dependent perturbation theory. For high charges ( Z1+Z2 ≧ 60) the molecular electrons are highly relativistic. Therefore, the Dirac equation has to be used to obtain the energies and wave functions. The Dirac Hamiltonian is transformed into the intrinsic rotating coordinate system where prolate spheroidal coordinates are introduced. A set of basis functions is proposed which allows the evaluation of all matrix elements of the Dirac Hamiltonian analytically. The resulting matrix is diagonalized numerically. The finite nuclear charge distribution is also taken into account. Results are presented and discussed for various characteristic systems, e. g. Br-Br, Ni-Ni, I-I, Br-Zr, I-Au, U -U, etc.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献