Abstract
Abstract
The smallest topological Euler–Poincaré characteristic supported on a smooth surface of general type is 3. In this paper, we show that such a surface has to be a fake projective plane unless h1, 0(M) = 1. Together with the classification of fake projective planes given by Prasad and Yeung, the recent work of Cartwright and Steger, and a proof of the arithmeticity of the lattices involved in the present article, this gives a classification of such surfaces.
Subject
Applied Mathematics,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献