An Overview of the Mechanisms of Action of Herbicide Safeners

Author:

Hatzios Kriton K.

Abstract

Abstract Herbicide safeners are chemicals used for manipulating the tolerance of large-seeded grass crops to selected soil-applied herbicides. The physiological interactions of herbicides and their respective safeners are characterized by the following facts: a) safeners are most effective when applied prior to or simultaneously with the herbicides whose injury they prevent; b) safeners exhibit a high degree of botanical and chemical specificity protecting only certain grasses against injury caused from specific classes of herbicides; and c) protected grass crops are moderately tolerant to the antagonized herbicides. At the biochemical level, safeners may act either as “bioregulators” regulating the amount of a given herbicide that reaches its target site in an active form or as “antagonists” of herbicidal effects at a similar site of action. A safener-induced enhancement of herbicide detoxication in protected plants is currently viewed as the most apparent mechanism for the action of the currently available safeners. Safeners enhance the conjugation of carbamothioate and chloroacetanilide herbicides with glutathione either by elevating the levels of reduced glutathione (GSH) or by inducing the activity of specific glutathione S̱-transferases (GSTs). A safener-induced enhancement of the activity of other degradative enzymes such as the cytochrome P450-dependent mixed function oxidases or UDP-glucosyl transferases seems to be important for the protective action of safeners against injury from aryloxyphenoxypropionate, imidazolinone, and sulfonylurea herbicides. Metabolic processes related to acetyl-CoA metabolism have been implicated as likely target sites for a competitive antagonism between safeners and chloroacetanilide or carbamothioate herbicides. At the molecular level, the “gene activation” and “gene amplification” theories offer a likely explanation for the action of safeners.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3