Growth Characteristics, Physiological and Metabolic Responses of Teak (Tectona Grandis Linn. f.) Clones Differing in Rejuvenation Capacity Subjected to Drought Stress

Author:

Husen Azamal1

Affiliation:

1. Department of Biology, Faculty of Natural and Computational Sciences, University of Gondar, P.O. Box 196, Gondar , Ethiopia

Abstract

Summary Four-year old clones (FG1 and FG11) of teak (Tectona grandis Linn. f.), differing in rejuvenation capacity were grown in glazed earthenware pots. Drought treatments were imposed by withholding water for 20 days and rewatered to the field capacity daily for 5 days and the possible role of biochemical alteration and antioxidant metabolism in conferring photosynthetic capacity was determine by measuring photosynthetic traits, cellular damage and assaying activities of the superoxide dismutase (SOD) and peroxidase (PER) enzymes. Growth, relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), chlorophyll fluorescence (Fv/Fm) and chlorophyll a, b, total chlorophyll and soluble protein content decreased significantly with increasing drought treatments from 5 to 20 days. Droughtinduced stress significantly increased the carotenoids content, relative electrolyte leakage and malondialdehyde (MDA) content, and, at the same time, accumulated free proline, free amino acid and soluble sugars in both clones. After re-watered to the field capacity daily for 5 days, both clones were shown significant recovery in the studied parameters. As compared with the FG11, the FG1 clone was more tolerant to drought as indicated by higher level of antioxidant enzyme activities as well as lower MDA content and electrolyte leakage. Similarly, drought stress caused less pronounced inhibition of Pn in FG1 than in FG11 clone. After re-hydration, the recovery was relatively quicker in FG1 than in FG11 clone. FG1 clone showed significant recovery in maximum quantum yield or photochemical efficiency of PSII (Fv/Fm) after 5 days of re-watering. The FG11 compared to the FG1, the former clone was less tolerant to drought than the latter. These results demonstrated that the different physiological strategies including antioxidative enzymes employed by the FG1 and FG11 clones of T. grandis to protect photosynthetic apparatus and alleviate drought stress. Furthermore, this study also provides ideas for teak improvement programmes and may be useful in breeding or genetic engineering for their tolerance to drought stress.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Forestry

Reference91 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3