Synergistic Effect between Modified Graphene Oxide and Ammonium Polyphosphate on Combustion Performance, Thermal Stability and Mechanical Properties of Polylactic Acid

Author:

Pang X.-Y.1,Meng Y.-F.1,Xin Y.-P.1,Chang R.1,Xu J.-Z.12

Affiliation:

1. College of Chemistry and Environmental Science, Hebei University , Baoding , PRC

2. Flame Retardant Material and Processing Technology Engineering Technology Research Center of Hebei Province; Key Laboratory of Analytical Science and Technology of Hebei Province , Hebei University , Baoding , PRC

Abstract

Abstract To improve the thermal stability, ZF-GO (graphene oxide (GO) modified by zinc ferrite (ZF)) is prepared. In view of the anti-dripping function of ZF-GO and flame retardant effect of ammonium polyphosphate (APP), the influence of ZF-GO, APP, mixture of ZF-GO and APP on combustion performance, thermal stability and mechanical properties of polylactic acid (PLA) is investigated. Results show that the modification of GO by ZF significantly improves the residue of ZFGO by 34.7%. The char-forming capability and unique network structure of ZF-GO prevent the melt dripping of PLA. Although APP can increase the limiting oxygen index of PLA, there is still melt dripping. The combination of ZF-GO and APP improves the residual yield of 94PLA/3ZF-GO/3APP by 4.3 times relative to pure PLA, and the UL-94 level reaches V-0. The two additives show synergistic char-forming effect, and there is both physical carbonization and chemical carbonization. The incorporated fillers can decrease the total heat release (THR) of PLA composites. Specifically, the THR and peak value of heat release rate of 94PLA/3ZF-GO/3APP decrease by 21.2% and 53.9%, respectively. For the PLA/ZF-GO/APP system, plenty of residues and the anti-dripping network structure are key factors to get good flame retardancy. Addition of ZFGO and APP reduces the tensile strength, but the tensile elongation of the modified PLA composites is improved. 94PLA/ 3ZF-GO/3APP shows good integrated performance.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3