Using Symbolic Regression Models to Predict the Pressure Loss of Non-Newtonian Polymer-Melt Flows through Melt-Filtration Systems with Woven Screens

Author:

Pachner S.1,Roland W.1,Aigner M.2,Marschik C.1,Stritzinger U.1,Miethlinger J.1

Affiliation:

1. Institute of Polymer Extrusion and Compounding, Johannes Kepler University Linz , Linz , Austria

2. EREMA Engineering Recycling Maschinen und Anlagen Ges.m.b.H , Ansfelden , Austria

Abstract

Abstract When selecting a melt-filtration system, the initial pressure drop is a critical parameter. We used heuristic optimization algorithms to develop general analytical equations for estimating the dimensionless pressure loss of square and Dutch woven screens in polymer processing and recycling. We present a mathematical description – without the need for further numerical methods – of the dimensionless pressure loss of non-Newtonian polymer melt-flows through woven screens. Applying the theory of similarity, we first simplified, and then transformed into dimensionless form, the governing equations. By varying the characteristic independent dimensionless influencing parameters, we created a comprehensive parameter set. For each design point, the nonlinear governing equations were solved numerically. We subsequently applied symbolic regression based on genetic programming to develop models for the dimensionless pressure drop. Finally, we validated our models against experiments using both virgin and slightly contaminated in-house and post-industrial recycling materials. Our regression models predict the experimental data accurately, yielding a mean relative error of MRE = 13.7%. Our modeling approach, the accuracy of which we have proven, allows fast and stable prediction of the initial pressure drop of polymer-melt flows through square woven and Dutch weave screens, rendering further numerical simulations unnecessary.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3