Optimization and Scale-Up of Twin-Screw Reactive Extrusion: The Case of EVA Transesterification

Author:

Berzin F.1,David C.2,Vergnes B.3

Affiliation:

1. UMR FARE (Fractionnement des AgroRessources et Environnement), Université de Reims Champagne-Ardenne, INRAE, Reims , France

2. Sciences Computers Consultants, Saint Etienne , France

3. MINES Paris Tech, PSL Research University, CEMEF, UMR CNRS 7635, CS 10207, Sophia Antipolis , France

Abstract

Abstract Despite its complexity, reactive extrusion is continuously developing for the production of new and performing materials. Due to the strong coupling between flow, rheology and chemistry, optimizing this process for a given reaction remains a difficult task. Moreover, the scale-up from the laboratory to the production scale is another crucial question, which cannot be solved by conventional techniques. In this paper, we show how the use of numerical modeling may help answer these complex questions by providing realistic solutions, rapidly and without excessive costs. The example of a transesterification reaction was chosen because this reaction has been carefully characterized in previous studies. The reaction kinetics and the kinetic constants are well known and the modeling of this reactive extrusion process has proved to be realistic and accurate.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3