Deep learning of the role of interleukin IL-17 and its action in promoting cancer

Author:

Nutini Alessandro1,Sohail Ayesha2

Affiliation:

1. Center for Study in Motor Science , Biomechanics dept , Lucca , Italy

2. Department of Mathematics , Comsats University Islamabad , Lahore 54000 , Pakistan

Abstract

Abstract In breast cancer patients, metastasis remains a major cause of death. The metastasis formation process is given by an interaction between the cancer cells and the microenvironment that surrounds them. In this article, we develop a mathematical model that analyzes the role of interleukin IL-17 and its action in promoting cancer and in facilitating tissue metastasis in breast cancer, using a dynamic analysis based on a stochastic process that accounts for the local and global action of this molecule. The model uses the Ornstein–Uhlembeck and Markov process in continuous time. It focuses on the oncological expansion and the interaction between the interleukin IL-17 and cell populations This analysis tends to clarify the processes underlying the metastasis expansion mechanism both for a better understanding of the pathological event and for a possible better control of therapeutic strategies. IL-17 is a proinflammatory interleukin that acts when there is tissue damage or when there is a pathological situation caused by an external pathogen or by a pathological condition such as cancer. This research is focused on the role of interleukin IL-17 which, especially in the case of breast cancer, turns out to be a dominant “communication pin” since it interconnects with the activity of different cell populations affected by the oncological phenomenon. Stochastic modeling strategies, specially the Ornstein-Uhlenbeck process, with the aid of numerical algorithms are elaborated in this review. The role of IL-17 is discussed in this manuscript at all the stages of cancer. It is discussed that IL-17 also acts as “metastasis promoter” as a result of its proinflammatory nature. The stochastic nature of IL-17 is discussed based on the evidence provided by recent literature. The resulting dynamical analysis can help to select the most appropriate therapeutic strategy. Cancer cells, in the case of breast cancer, have high level of IL-17 receptors (IL-17R); therefore the interleukin itself has direct effects on these cells. Immunotherapy research, focused on this cytokine and interlinked with the stochastic modeling, seems to be a promising avenue.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3