Machine learning-based approach for segmentation of intervertebral disc degeneration from lumbar section of spine using MRI images

Author:

Shinde Jayashri V.1,Joshi Yashwant V.2,Manthalkar Ramchandra R.2,Joshi 3

Affiliation:

1. Late G. N. Sapkal College of Engineering , Nashik , Maharashtra , India

2. Shri Guru Gobind Singhji Institute of Engineering and Technology , Vishnupuri , Nanded , Maharashtra , India

3. M.G.M.’s College of Engineering Kamothe , Navi Mumbai , Maharashtra , India

Abstract

Abstract Objectives Intervertebral disc segmentation is one of the methods to diagnose spinal disease through the degeneration in asymptomatic and symptomatic patients. Even though numerous intervertebral disc segmentation techniques are available, classifying the grades in the intervertebral disc is a hectic challenge in the existing disc segmentation methods. Thus, an effective Whale Spine-Generative Adversarial Network (WSpine-GAN) method is proposed to segment the intervertebral disc for effective grade classification. Methods The proposed WSpine-GAN method effectively performs the disc segmentation, wherein the weights of Spine-GAN are optimally tuned using Whale Optimization Algorithm (WOA). Then, the refined disc features, such as pixel-based features and the connectivity features are extracted. Finally, the K-Nearest Neighbor (KNN) classifier based on the pfirrmann’s grading system performs the grade classification. Results The implementation of the grade classification strategy based on the proposed WSpine-GAN and KNN is performed using the real-time database, and the performance based on the metrics yielded the accuracy, true positive rate (TPR), and false positive rate (FPR) values of 97.778, 97.83, and 0.586% for the training percentage and 92.382, 90.580, and 1.972% for the K-fold value. Conclusions The proposed WSpine-GAN method effectively performs the disc segmentation by integrating the Spine-GANmethod and WOA. Here, the spinal cord images are segmented using the proposed WSpine-GAN method by tuning the weights optimally to enhance the performance of the disc segmentation.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3