Synthesis, properties and catalysis of quantum dots in C–C and C-heteroatom bond formations

Author:

Das Dwaipayan1,Saha Moumita1,Das Asish. R.1

Affiliation:

1. Department of Chemistry , University of Calcutta , Kolkata 700009 , India

Abstract

Abstract Luminescent quantum dots (QDs) represent a new form of carbon nanomaterials which have gained widespread attention in recent years, especially in the area of chemical sensing, bioimaging, nanomedicine, solar cells, light-emitting diode (LED), and electrocatalysis. Their extremely small size renders some unusual properties such as quantum confinement effects, good surface binding properties, high surface‐to‐volume ratios, broad and intense absorption spectra in the visible region, optical and electronic properties different from those of bulk materials. Apart from, during the past few years, QDs offer new and versatile ways to serve as photocatalysts in organic synthesis. Quantum dots (QD) have band gaps that could be nicely controlled by a number of factors in a complicated way, mentioned in the article. Processing, structure, properties and applications are also reviewed for semiconducting quantum dots. Overall, this review aims to summarize the recent innovative applications of QD or its modified nanohybrid as efficient, robust, photoassisted redox catalysts in C–C and C-heteroatom bond forming reactions. The recent structural modifications of QD or its core structure in the development of new synthetic methodologies are also highlighted. Following a primer on the structure, properties, and bio-functionalization of QDs, herein selected examples of QD as a recoverable sustainable nanocatalyst in various green media are embodied for future reference.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3