Advances in biopolymer composites and biomaterials for the removal of emerging contaminants

Author:

Stephen Dayana Priyadharhsini1ORCID,Palanisamy Suresh Babu23ORCID

Affiliation:

1. National Institute of Technology , Tiruchirappalli , Tamil Nadu , India

2. Department of Biotechnology, Saveetha School of Engineering , Saveetha Institute of Medical and Technical Sciences (SIMATS) , Saveetha Nagar, Thandalam , Chennai 602 105 , Tamil Nadu , India

3. Faculty of Pharmaceutical Sciences , UCSI University , 56000 Cheras , Kuala Lumpur , Malaysia

Abstract

Abstract Domestic, agriculture, and industrial activities contaminate the waterbodies by releasing toxic substances and pathogens. Removal of pollutants from wastewater is critical to ensuring the quality of accessible water resources. Several wastewater treatments are often used. Researchers are increasingly focusing on adsorption, ion exchange, electrostatic interactions, biodegradation, flocculation, and membrane filtration for the efficient reduction of pollutants. Biopolymers are a combination of two or more products produced by the living organisms used to give the desired finished product with a unique attribute. Biomaterials are also similar to traditional polymers by having higher flexibility, biodegradability, low toxicity, and nontoxic secondary byproducts producing ability. Grafting, functionalization, and crosslinking will be used to enhance the characteristics of biopolymers. The present chapter will illustrate some of the important biopolymers and its compos that will impact wastewater treatment in the future. Most commonly used biopolymers including chitosan (CS), activated carbon (AC), carbon-nanotubes (CNTs), and graphene oxide (GO) are discussed. Finally, the opportunities and difficulties for applying adsorbents to water pollution treatment are discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3