Synthetic drives for useful drug molecules through organocatalytic methods

Author:

Krishna Banik Bimal1,Sahoo Biswa Mohan23,Tiwari Abhishek4,Tiwari Varsha4,Jain Adya5,Borah Preetismita6

Affiliation:

1. Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar , Kingdom of Saudi Arabia

2. Roland Institute of Pharmaceutical Sciences , Berhampur 760010 , Odisha , India

3. Biju Patnaik University of Technology (BPUT) , Rourkela , Odisha , India

4. Faculty of Pharmacy, IFTM University , Moradabad 244102 , Uttar Pradesh , India

5. Department of Chemistry , MRK Educational Institutions, IGU , Rewari , Haryana , India

6. CSIR-Central Scientific Instruments Organization , Chandigarh , India

Abstract

Abstract The treatment of various pathological conditions in human beings involves the use of safe and efficacious drug substances. But there are different complications associated with the treatment of various disease states including drug resistance, adverse drug reactions, toxicity, etc. To minimize these problems, there is an urgent need to develop new therapeutics with suitable pharmacokinetic and pharmacodynamic properties. So, the organocatalytic methods are emerged as a potential synthetic tool to accelerate the design of new drug candidates with improved physicochemical and pharmacological properties, selectivity, and efficiency for the treatment of life-threatening diseases. Organocatalytic reactions refer to the chemical reaction that is accelerated by organic catalysts instead of using organometallic catalysts. Organocatalysts are more advantageous in comparison to metallic catalysts because organocatalysts are cost-effective, stable, efficient, non-toxic, readily available, and easy to handle. In addition to this, the organocatalysis method involves an eco-friendly reaction by minimizing the formation of by-products and reducing the chemical hazards. Organocatalysts are categorized into four classes such as Lewis acids, Lewis bases, Bronsted acids, and Bronsted bases. These catalysts are generally involved in various reactions mechanisms such as Aldol reaction, Diels–Alder reactions, Michael Addition and Knoevenagal reactions, etc. The utility of organocatalyst in synthetic chemistry results in the development of medicinally active compounds with diverse structural features.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3