Optical bone densitometry insensitive to skin thickness

Author:

Miura Kaname12ORCID,Khantachawana Anak3,Wakamori Tsuyoshi1,Matsubara Hidenori4,Tanaka Shigeo M.5

Affiliation:

1. Mechanical Science and Engineering , Graduate School of Natural Science and Technology, Kanazawa University , Kanazawa , Ishikawa, Japan

2. Biological Engineering Program , Faculty of Engineering, King Mongkut’s University of Technology Thonburi , Bangkok , Thailand

3. Department of Mechanical Engineering , Faculty of Engineering, King Mongkut’s University of Technology Thonburi , Bangkok , Thailand

4. Department of Orthopaedic Surgery , Graduate School of Medical Sciences, Kanazawa University , Kanazawa , Ishikawa, Japan

5. Institute of Science and Engineering, Faculty of Frontier Engineering, Kanazawa University , Kanazawa , Ishikawa, Japan

Abstract

Abstract Skin thickness, including the adipose layer, which varies from individual to individual, affects the bone density measurement using light. In this study, we proposed a method to measure skin thickness using light and to correct the bias caused by differences in skin thickness and verified the proposed method by experiments using a phantom. We measured simulated skin of different thicknesses and bovine trabecular bone of different bone mineral densities (BMDs) using an optical system consisting of lasers of 850 and 515 nm wavelengths, lenses, and slits. Although the slope of the light intensity distribution formed on the surface of the material when irradiated by the 850 nm laser is affected by the thickness of the skin phantom. The difference of the intensity distribution peaks (δy) between the 850 and 515 nm lasers was strongly correlated with the thickness of the skin phantom. The coefficient of determination between the measurements and the BMD was improved by correcting the 850 nm laser measurements with δy. This result suggests that the method is applicable to optical bone densitometry, which is insensitive to differences in skin thickness.

Funder

Kanazawa City

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3