A novel deep learning approach for sickle cell anemia detection in human RBCs using an improved wrapper-based feature selection technique in microscopic blood smear images

Author:

S. Alagu1ORCID,Ganesan Kavitha1,K. Bhoopathy Bagan1

Affiliation:

1. Department of Electronics Engineering , Madras Institute of Technology , Chennai , India

Abstract

Abstract Sickle Cell Anemia (SCA) is a disorder in Red Blood Cells (RBCs) of human blood. Children under five years and pregnant women are mostly affected by SCA. Early diagnosis of this ailment can save lives. In recent years, the computer aided diagnosis of SCA is preferred to resolve this issue. A novel and effective deep learning approach for identification of sickle cell anemia is proposed in this work. Around nine hundred microscopic images of human red blood cells are obtained from the public database ‘erythrocytes IDB’. All the images are resized uniformly. About 2048 deep features are extracted from the fully connected layer of pre-trained model InceptionV3. These features are further subjected to classification using optimization-based methods. An improved wrapper-based feature selection technique is implemented using Multi- Objective Binary Grey Wolf Optimization (MO-BGWO) approach with KNN and SVM for classification. The detection of sickle cell is also performed using typical InceptionV3 model by using SoftMax layer. It is observed that the performance of the proposed system seems to be high when compared to the classification using the original InceptionV3 model. The results are validated by various evaluation metrics such as accuracy, precision, sensitivity, specificity and F1-score. The SVM classifier yields high accuracy of about 96%. The optimal subset of deep features along with SVM enhances the system performance in the proposed work. Thus, the proposed approach is appropriate for pathologists to take early clinical decisions on detection of sickle cells.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3