Frontal-occipital network alterations while viewing 2D & 3D movies: a source-level EEG and graph theory approach

Author:

Yu Minchang1ORCID,Xiao Shasha1,Tian Feng2,Li Yingjie3ORCID

Affiliation:

1. School of Communication and Information Engineering, Shanghai University , Shanghai , China

2. Shanghai Film Academy, Shanghai University , Shanghai , China

3. School of Life Sciences, College of International Education, Institute of Biomedical Engineering, Shanghai University , Shanghai , China

Abstract

Abstract Many researchers have measured the differences in electroencephalography (EEG) while viewing 2D and 3D movies to uncover the neuromechanism underlying distinct viewing experiences. Using whole-brain network analyses of scalp EEG, our previous study reported that beta and gamma bands presented higher global efficiencies while viewing 3D movies. However, scalp EEG is influenced by volume conduction, not allowing inference from a neuroanatomy perspective; thus, source reconstruction techniques are recommended. This paper is the first to measure the differences in the frontal-occipital networks in EEG source space during 2D and 3D movie viewing. EEG recordings from 40 subjects were performed during 2D and 3D movie viewing. We constructed frontal-occipital networks of alpha, beta, and gamma bands in EEG source space and analyzed network efficiencies. We found that the beta band exhibited higher global efficiency in 3D movie viewing than in 2D movie viewing; however, the alpha global efficiency was not statistically significant. In addition, a support vector machine (SVM) classifier, taking functional connectivities as classification features, was built to identify whether the frontal-occipital networks contain patterns that could distinguish 2D and 3D movie viewing. Using the 6 most important functional connectivity features of the beta band, we obtained the best accuracy of 0.933. Our findings shed light on uncovering the neuromechanism underlying distinct experiences while viewing 2D and 3D movies.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3