Classification of breast cancer with deep learning from noisy images using wavelet transform

Author:

Cengiz Enes1,Kelek Muhammed Mustafa2ORCID,Oğuz Yüksel2ORCID,Yılmaz Cemal3ORCID

Affiliation:

1. Department of Mechatronic Engineering , Afyon Kocatepe University , Afyonkarahisar , Turkey

2. Department of Electrical and Electronics Engineering , Afyon Kocatepe University , Afyonkarahisar , Turkey

3. Department of Energy Engineering, Mingachevir State University , Mingachevir , Azerbaijan

Abstract

Abstract In this study, breast cancer classification as benign or malignant was made using images obtained by histopathological procedures, one of the medical imaging techniques. First of all, different noise types and several intensities were added to the images in the used data set. Then, the noise in images was removed by applying the Wavelet Transform (WT) process to noisy images. The performance rates in the denoising process were found out by evaluating Peak Signal to Noise Rate (PSNR) values of the images. The Gaussian noise type gave better results than other noise types considering PSNR values. The best PSNR values were carried out with the Gaussian noise type. After that, the denoised images were classified by Convolution Neural Network (CNN), one of the deep learning techniques. In this classification process, the proposed CNN model and the VggNet-16 model were used. According to the classification result, better results were obtained with the proposed CNN model than VggNet-16. The best performance (86.9%) was obtained from the data set created Gaussian noise with 0.3 noise intensity.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3