Affiliation:
1. Centre for Science and Technology Studies (CWTS) , Leiden University , Leiden , The Netherlands
Abstract
Abstract
Purpose
First, to review the state-of-the-art in patent citation analysis, particularly characteristics of patent citations to scientific literature (scientific non-patent references, SNPRs). Second, to present a novel mapping approach to identify technology-relevant research based on the papers cited by and referring to the SNPRs.
Design/methodology/approach
In the review part we discuss the context of SNPRs such as the time lags between scientific achievements and inventions. Also patent-to-patent citation is addressed particularly because this type of patent citation analysis is a major element in the assessment of the economic value of patents. We also review the research on the role of universities and researchers in technological development, with important issues such as universities as sources of technological knowledge and inventor-author relations. We conclude the review part of this paper with an overview of recent research on mapping and network analysis of the science and technology interface and of technological progress in interaction with science. In the second part we apply new techniques for the direct visualization of the cited and citing relations of SNPRs, the mapping of the landscape around SNPRs by bibliographic coupling and co-citation analysis, and the mapping of the conceptual environment of SNPRs by keyword co-occurrence analysis.
Findings
We discuss several properties of SNPRs. Only a small minority of publications covered by the Web of Science or Scopus are cited by patents, about 3%–4%. However, for publications based on university-industry collaboration the number of SNPRs is considerably higher, around 15%. The proposed mapping methodology based on a “second order SNPR approach” enables a better assessment of the technological relevance of research.
Research limitations
The main limitation is that a more advanced merging of patent and publication data, in particular unification of author and inventor names, in still a necessity.
Practical implications
The proposed mapping methodology enables the creation of a database of technology-relevant papers (TRPs). In a bibliometric assessment the publications of research groups, research programs or institutes can be matched with the TRPs and thus the extent to which the work of groups, programs or institutes are relevant for technological development can be measured.
Originality/value
The review part examines a wide range of findings in the research of patent citation analysis. The mapping approach to identify a broad range of technology-relevant papers is novel and offers new opportunities in research evaluation practices.
Reference108 articles.
1. Aharonson, B.S., & Schilling, M.A. (2016). Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution. Research Policy, 45(12), 81–96.
2. Albert, M.B., Avery, D., Narin, F., & McAllister, P. (1991). Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20(3), 251–259.
3. Alcácer, J., Gittelman, M., & Sampat, B. (2009). Applicant and examiner citations in U.S. patents: An overview and analysis. Research Policy, 38(2), 415–427.
4. Appio, F.P., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: A document co-citation analysis. Scientometrics, 101(1), 623–661.
5. Arts, S., Appio, F., & van Looy, B. (2012). Validating patent indicators that assess technological radicalness: The case of biotechnology. In E. Archambault, Y. Gingras, & V. Larivière (Eds.), Proceedings of 17th International Conference on Science and Technology Indicators (Vol. 1, pp. 82–97). Montréal: Science-Metrix and OST.
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献