Effect of additives on degradation of poly vinyl alcohol (PVA) using ultrasound and microwave irradiation

Author:

Bagal Manisha V.1,Saini Rahul R.2,Shaikh Abdul Rahim I.2,Patil Saurabh2,Mohod Ashish V.23,Pinjari Dipak V.4

Affiliation:

1. Department of Chemical Engineering, Bharati Vidyapeeth College of Engineering , Navi Mumbai 400613 , India

2. Department of Chemical Engineering, AISSMS College of Engineering , Kennedy Road, Near RTO , Pune 411001 , India

3. Chemical Engineering Department , Universidade de São Paulo , São Paulo , Brazil

4. Chemical Engineering Department , Institute of Chemical Technology , Matunga , Mumbai 400019 , India

Abstract

Abstract The degradation of polyvinyl alcohol (PVA) has been investigated using ultrasonic (US) as well as microwave (MW) irradiation techniques with the approach of process intensification based on different additives, such as Titanium Dioxide (TiO2), Sodium Lauryl Sulphate (SLS), Zinc Oxide (ZnO) and air. The effects of sonication time, initial polymer concentration, and temperature on the extent of reduction in viscosity have been thoroughly investigated using US as well as MW irradiation approaches. Basically, the degradation process has been optimized by utilizing two different ultrasonic reactors in a combined approach of ultrasonic horn and bath. The maximum extent of degradation of PVA was found to be 69.33% using MW irradiation with a required energy of 0.321 g/JL, and 62.47% using US horn with a required energy of 0.054 g/JL when operated at 0.1 g/L of TiO2 catalyst. The combination of US horn and US bath results in same degradation as 0.1 g/L of TiO2 catalyst with US horn. It has also been observed that the maximum degradation of PVA was obtained with a minimum treatment time of 3 min using MW irradiation, whereas the US horn required 40 min. Moreover, a lower extent of PVA degradation was obtained when additives were used, such as surfactants (SLS) and air. As a result, it can be inferred that the MW-assisted approach in the presence of process-intensifying additives/catalysts is the best approach for the degradation of PVA with a minimum energy consumption.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3