Extrusion foaming of linear and branched polypropylenes – input of the thermomechanical analysis of pressure drop in the die

Author:

Sandino Carlos1ORCID,Peuvrel-Disdier Edith1,Agassant Jean-François1,Laure Patrice12ORCID,Boyer Séverine A. E.1ORCID,Hibert Geoffrey3,Trolez Yves3

Affiliation:

1. Mines Paris, PSL University , Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, CS 10207, 06904 Sophia Antipolis cedex , France

2. Laboratoire J.-A. Dieudonné, CNRS UMR 6621 , Université Côte d’Azur , Parc Valrose, 06108 Nice Cedex 02 , France

3. TotalEnergies One Tech Belgium , Zone Industrielle Feluy C, B 7181 Feluy , Belgium

Abstract

Abstract This paper aims at a better understanding of the polypropylene (PP) physical extrusion foaming process with the objective of obtaining the lowest possible foam density. Two branched PPs were compared to the corresponding linear ones. Their shear and elongation viscosities were measured as well as their crystalline properties. Trials were conducted in a single screw extruder equipped with a gear pump and a static mixer cooler to adjust the melt temperature at the final die. The effect of decreasing this temperature on the PP foamability and on the pressure drop in the die was analyzed. The foam density of branched PPs varies from high to low values while decreasing the foaming temperature. In the same processing conditions, the foam density of linear PPs does not decrease so much, as already evidenced in the literature. The foamability transition coincides with an increase of the pressure drop in the die. The originality of the work lies in the thermomechanical analysis of the polymer flow in the die which allows the identification of the relevant physical phenomena for a good foamability. The comparison of the experimental pressure drops in the die and the computed ones with the identified purely viscous behavior points out the influence of the foaming temperature and of the PP structure. At high foaming temperature the discrepancy between experimental measurements and the computed pressure drops remains limited. It increases when decreasing the foaming temperature, but the mismatch is much more important for branched PPs than for linear ones. This difference is analyzed as a combination of the activation energy of the viscosity, the elongational viscosity in the convergent geometry of the die which is much more important for branched PPs than for linear ones, and the onset of crystallization which occurs at higher temperature for branched PPs than for linear PPs.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3