A comparative analysis of the effect of post production treatments and layer thickness on tensile and impact properties of additively manufactured polymers

Author:

Bolat Çağın1ORCID,Ergene Berkay2ORCID,Ispartalı Hasan3ORCID

Affiliation:

1. Faculty of Engineering, Mechanical Engineering Department , Samsun University , Samsun , Türkiye

2. Faculty of Technology, Mechanical Engineering Department , Pamukkale University , Denizli , Türkiye

3. Innovative Technologies Application and Research Center , Suleyman Demirel University , Isparta , Türkiye

Abstract

Abstract In recent years, additive manufacturing (AM) technologies have become greatly popular in the polymer, metal, and composite industries because of the capability for rapid prototyping, and appropriateness for the production of complex shapes. In this study, a comprehensive comparative analysis focusing on the influence of post-processing types (heat treatment and water absorption) on tensile and impact responses was carried out on 3D printed PETG, PLA, and ABS. In addition, layer thickness levels (0.2, 0.3, and 0.4 mm) were selected as a major production parameter and their effect on mechanical properties was combined with post-processing type for the first time. The results showed that both tensile and impact resistance of the printed polymers increased thanks to the heat treatment. The highest tensile strength was measured for heat-treated PLA, while the peak impact endurance level was reached for heat-treated PETG. Also, water absorption caused a mass increment in all samples and induced higher tensile elongation values. Decreasing layer thickness had a positive effect on tensile features, but impact strength values dropped. On the other hand, all samples were subjected to macro and micro failure analyses to understand the deformation mechanism. These inspections indicated that for impact samples straight crack lines converted to zigzag style separation lines after the heat treatment. As for the tensile samples, the exact location of the main damage zone altered with the production stability, the water absorption capacity of the polymer, and the thermal diffusion ability of the filament.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3