Time series data for process monitoring in injection molding: a quantitative study of the benefits of a high sampling rate

Author:

Bogedale Lucas1ORCID,Schrodt Alexander123ORCID,Heim Hans-Peter1

Affiliation:

1. Faculty of Mechanical Engineering, Institute of Materials Engineering – Plastics , University of Kassel , Kassel , Germany

2. Institute of Physics, Functional Thin Films and Physics with Syncrotron Radiation , University of Kassel , Kassel , Germany

3. Data Hive Cassel GmbH , Kassel , Germany

Abstract

Abstract Process monitoring systems are playing an increasingly important role in reducing production capacity losses in injection molding. Process monitoring and optimization systems are mostly based on processing data of injection molding machine control systems. These data consist of scalar data and time series. This paper introduces a novel approach to modelling injection molding processes using only time series data and evaluates the quantitative influences of varying sampling times on calculation of integral values and model quality. On the basis of the first experiment, it is shown that the sampling rates of these time series have a large influence on information which can be derived from this data (e.g. injection work). These findings provide an assessment of whether the effort is justified for the respective requirements on the accuracy of the injection work and other parameters derived from the time series. In the second experiment, a model is presented which uses only the injection flow and injection pressure profile as input and achieves high coefficients of determination for the prediction of the part weight, despite the absence of mold sensor data and scalar data. It is shown that higher sampling rates of time series results in higher prediction quality of these models. This improves the understanding of the data needed for high quality machine learning models of injection molding processes and enable users to estimate a lower bound for the sample rates of time series for their use cases.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Reference17 articles.

1. Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B., Schmalzing, D., Schmitz, M., and Wortmann, A. (2020). Model- driven development of a digital model-driven development of a digital twin for injection molding. In: Advanced information systems engineering. Springer, Cham, Germany.

2. Chen, W.C., Tai, P.H., Wang, M.W., Deng, W.J., and Chen, C.T. (2008). A neural network-based approach for dynamic quality prediction in a plastic injection molding process. Expert Syst. Appl. 35: 843–849, https://doi.org/10.1016/j.eswa.2007.07.037.

3. Eben, J. (2014). Identifikation und Reduzierung realer Schwankungen durch praxistaugliche Prozessführungsmethoden beim Spritzgießen, Ph.D. thesis. Chemnitz.

4. Haman, S. (2004). Prozessnahes Qualitätsmanagement beim Spritzgießen, Ph.D. thesis. Chemnitz, Technischen Universität Chemnitz, Institut für Automatisierungstechnik.

5. Heim, H.P. (2002). Quality assurance in plastics injection moulding – process monitoring and process control. In: Business briefing: medical device manufacturing & technology.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3