Design of Artificial Sun-Synchronous Orbits with Main Zonal Harmonics and Solar Radiation Pressure Using Continuous Low-Thrust Control Strategies

Author:

Masoud Akram1,Rahoma Walid Ali2,Khattab Elamira Hend1,El-Salam Fawzy Ahmed Abd3

Affiliation:

1. Department of Astronomy and Space Science, Faculty of Science , Cairo University , Cairo , Egypt , 12613

2. Department of Astronomy and Space Science, Faculty of Science , Cairo University , Cairo , Egypt , 12613 ; Laboratoire d’Astronomie de Lille / Université de Lille , 59000 Lille , France

3. Department of Astronomy and Space Science, Faculty of Science , Cairo University , Cairo , Egypt , 12613 ; Taibah University , Faculty of Science, Mathematics Department , Madina , Saudi Arabia

Abstract

Abstract Artificial sun-synchronous orbits are suitable for remote sensing satellites and useful in giving accurate surface mapping. To design such orbits accurately with arbitrary orbital elements, three control strategies are provided with the consideration of main zonal harmonics up to J 4 and solar radiation pressure (SRP). In this paper, the continuous variable low-thrust control is used as a way to achieve these artificial orbits and given by electric propulsions rather than chemical engines to enlarge lifespan of the spacecraft. The normal continuous low-thrust control is used to illustrate the control strategies. Furthermore, formulas for refinement of normal control thrusts are applied to overcome errors due to approximations. The results of the simulation show that the control strategies explained in this paper can realize sun-synchronous orbits with arbitrary orbital parameters without side effects and the effect of solar radiation pressure is very small relative to main zonal harmonics. A new technique is suggested, ASSOT-3, to minimize fuel consumption within one orbital period more than others. This technique is based on computing the root mean square of the rate of ascending node longitude instead of the average.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frozen Orbits Construction for a Lunar Solar Sail;Journal of Astronomy and Space Sciences;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3