Investigation of the mechanism of a solar flare by means of MHD simulations above the active region in real scale of time: The choice of parameters and the appearance of a flare situation

Author:

Podgorny Alexander Igorevich1,Podgorny Igor Maximovich2,Borisenko Alexei Vasilevich3

Affiliation:

1. Department of Nuclear Physics and Astrophysics, Lebedev Physical Institute of the RAS , Moscow , Russia

2. Department of Solar System Research, Institute of Astronomy of the RAS , Moscow , Russia

3. Department Astrospace Center, Lebedev Physical Institute of the RAS , Moscow , Russia

Abstract

Abstract The observed primordial energy release of solar flare in the corona is explained by the mechanism of S. I. Syrovatskii, according to which the flare energy is accumulated in the current sheet. The flare release of the current sheet energy causes the observed manifestations of the flare, which are explained by the electrodynamical model of a solar flare proposed by I. M. Podgorny. According to this model, hard X-ray beam radiation on the solar surface is explained by the acceleration of electrons in field aligned currents caused by the Hall electric field in the current sheet. The study of the flare mechanism is impossible without performing magnetohydrodynamic (MHD) simulations above a real active region (AR), in which the calculation begins several days before the appearance of flares. When setting the problem, no assumptions were made about the flare mechanism. An absolutely implicit finite-difference scheme, conservative with respect to the magnetic flux, has been developed, which is implemented in the PERESVET code. MHD simulation in the real scale of time can only be carried out, thanks to parallel computations using compute unified device architecture (CUDA) technology. Methods have been developed that made it possible to stabilize the numerical instability arising near the boundary of the region. Calculation above AR 10365 for low viscosities ( Rm = 1 0 9 {\rm{Rm}}=1{0}^{9} , Re = 1 0 7 {\rm{Re}}=1{0}^{7} , ν Art Phoosphere = ν Magn Art Phoosphere = 1 0 4 {\nu }_{\text{Art Phoosphere}}={\nu }_{\text{Magn Art Phoosphere}}=1{0}^{-4} ) showed the appearance of a singular X-type line, in the vicinity of which a current sheet with accumulated magnetic energy for a flare can form. Also, by means of MHD simulation the appearance of singular lines above a real AR is shown, in which the magnetic field is a superposition of an X-type field and a diverging magnetic field. In such a superposition of configurations, even if the diverging field predominates, the formation of a current sheet is possible, which can explain the appearance of a flare of not very high power. The coincidence of the position of the source of the flare thermal X-ray radiation with the places of appearance of the current sheets confirms the mechanism of the solar flare, based on the accumulation of energy in the magnetic field of the current sheet.

Publisher

Walter de Gruyter GmbH

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference19 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3